Remarks on \(Q\)-integral complete multipartite graphs\(^\star\)

Milan Pokorný\(^a\), Pavel Híc\(^a\), Dragan Stevanović\(^b,c\)

\(^{a}\) Trnava University, Faculty of Education, Priemyselná 4, P.O. Box 9, 918 43 Trnava, Slovakia

\(^{b}\) University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

\(^{c}\) University of Primorska, Institute Andrej Marušič, Muzejski trg 2, 6000 Koper, Slovenia

Abstract

A graph is \(Q\)-integral if the spectrum of its signless Laplacian matrix consists entirely of integers. In their study of \(Q\)-integral complete multipartite graphs, Zhao et al. [Linear Algebra Appl. 438 (2013), 1067–1077] posed two questions on the existence of such graphs. We resolve these questions and present some further results characterizing particular classes of \(Q\)-integral complete multipartite graphs.

Keywords: Signless Laplacian spectrum; Integral graphs; Complete multipartite graphs; Seidel spectrum.

2000 MSC: 05C50

1. Introduction

The study of graphs, whose spectrum of adjacency matrix consists of integers only, was initiated in a seminal paper by Harary and Schwenk in 1974 [1]. The results published up to 2002 have been surveyed in [2], while it should be noticed that more than a hundred new studies of integral graphs appeared in the last ten years, and that an updated survey of integral graphs is apparently due.

For a simple, undirected graph \(G\), the \textit{signless Laplacian} matrix of \(G\) is defined as \(Q(G) = D(G) + A(G)\), where \(D(G)\) is the diagonal matrix of the vertex degrees in \(G\) and \(A(G)\) is the adjacency matrix of \(G\). A graph \(G\) is called \(Q\)-integral if the characteristic polynomial of \(Q(G)\) has integer roots only. The \(Q\)-integral graphs were much less studied than integral graphs. Two simplest classes of \(Q\)-integral graphs are the complete graphs \(K_n\), with \(n \geq 2\), having the \(Q\)-spectrum \([2n - 2, (n - 2)^{n-1}]\), and the complete bipartite graphs \(K_{m,n}\), with \(m, n \geq 1\), having the \(Q\)-spectrum \([m + n, m^{n-1}, n^{m-1}, 0]\) (see [3]). By a computer search it is further established in [4] that there are exactly 172

\(\star\)Supported by the research grant 174033 of the Serbian Ministry of Science and Education, the research programme P1-0285 and the research project J1-4021 of the Slovenian Agency for Research, and the Slovak–Serbian bilateral project 680-00-140/2012-09/15.

Email addresses: mpokorny@truni.sk (Milan Pokorný), phic@truni.sk (Pavel Híc), dragance106@yahoo.com (Dragan Stevanović)
connected Q-integral graphs with up to ten vertices. In [5] it was proved that there are exactly 26 connected Q-integral graphs with maximum edge-degree at most four, with some partial results obtained for graphs with maximum degree five as well. The classes of Q-integral graphs obtained by the use of the join of regular graphs have been studied in [6] and, among others, all Q-integral complete split graphs have been identified there. A few infinite series of graphs having integer adjacency, Laplacian and signless Laplacian spectra have been constructed in [7], while semi-regular, bipartite Q-integral graphs have been considered in [8].

When it comes to the complete multipartite graphs, which in the case of integer adjacency spectrum have been the subject of earlier research [9, 10, 11], Yu et al [12] showed that the Q-characteristic polynomial of a complete multipartite graph K_{p_1, \ldots, p_r} with $n = p_1 + \cdots + p_r$ vertices, is equal to

$$P(Q(K_{p_1, \ldots, p_r}), x) = \prod_{i=1}^{r} (x - n + p_i)^{p_i - 1} \prod_{i=1}^{r} (x - n + 2p_i) \left(1 - \sum_{i=1}^{r} \frac{p_i}{x - n + 2p_i} \right). \quad (1)$$

If p'_1, \ldots, p'_s denote all the distinct integers among p_1, \ldots, p_r and $a_i, i = 1, \ldots, s$, denotes the multiplicity of p'_i in the family p_1, \ldots, p_r, then $K_{p'_1, \ldots, p'_s}$ will also be denoted by $K_{a_1, p'_1, \ldots, a_s, p'_s}$. Zhao et al [13] have studied the question when $K_{a_1, p'_1, \ldots, a_s, p'_s}$ is Q-integral and, in particular, paid much attention to the cases $s = 2$ and $s = 3$. They have finished their study with two questions that we answer affirmatively here.

Question 4.1 [13] Are there any Q-integral complete multipartite graphs $K_{a_1, p'_1, \ldots, a_s, p'_s}$ when $s \geq 4$?

Question 4.2 [13] Are there any Q-integral complete multipartite graphs $K_{a_1, p'_1, \ldots, a_s, p'_s}$ with $a_1 = \cdots = a_s = 1$ when $s \geq 3$?

The paper is divided into sections according to the value of s for studied complete multipartite graphs. In Section 2 we characterize a few particular classes of Q-integral complete multipartite graphs with $s = 2$ that were not considered by Zhao et al [13]. In Section 3 we give two infinite classes of Q-integral complete multipartite graphs with $s = 3$, one of which also satisfies $a_1 = a_2 = a_3 = 1$, hence affirmatively answering Question 4.2. In Section 4 we give another infinite class of Q-integral complete multipartite graphs with $s = 4$ and $a_1 = a_2 = a_3 = a_4 = 1$, as well as examples of Q-integral complete multipartite graphs with $s = 5$ and $s = 6$, hence affirmatively answering Question 4.1 as well.

2. **Characterization of some Q-integral complete multipartite graphs with $s = 2$**

From (1) it follows that

$$P(Q(K_{a,m}), x) = (x - m(a - 1))^{a(m-1)} (x - m(a - 2))^{a - 1} (x - 2m(a - 1)).$$
showing that \(K_{a,m} \) is \(Q \)-integral for every \(a, m \in \mathbb{N} \).

Recall that the join \(G_1 \sqcup G_2 \) of graphs \(G_1 \) and \(G_2 \) is obtained from the union of \(G_1 \) and \(G_2 \) by adding all possible edges joining a vertex in \(G_1 \) with a vertex in \(G_2 \). The following theorem from [6] gives a sufficient and necessary condition for the join of two \(Q \)-integral regular graphs to be \(Q \)-integral.

Theorem 1 ([6]). For \(Q \) integral of \(G \) showing that \(K \).

Corollary 4. \(K \) be \(\) from Corollary 2, the necessary and sufficient condition for \(K \).

Corollary 3. \(m,m,n \) is \(\) that, for some integer \(r \),

\[
(n_1 - 2r_1) - (n_2 - 2r_2))^2 + 4n_1n_2 \quad \text{is a perfect square.} \tag{2}
\]

Since \(K_{a,m,b,n} = K_{a,m} \sqcup K_{b,n} \). Theorem 1 applied to \(K_{a,m,b,n} \) yields

Corollary 2. \(K_{a,m,b,n} \) is \(Q \)-integral if and only if \((m(a-2) - n(b-2))^2 + 4abmn \) is a perfect square.

The pairs of \(m \) and \(n \) satisfying the condition from the previous corollary can be easily characterized for small values of \(a \) and \(b \). In particular, for \(a = b = 2 \) we immediately have

Corollary 3. \(K_{m,m,n,n} \) is \(Q \)-integral if and only if \(mn \) is a perfect square.

Corollary 4. \(K_{m,m,n} \) is \(Q \)-integral if and only if there exist integers \(k \), \(p \) and \(q \) such that either \((m,n) = (k(p^2 - q^2)/4, 2kq^2) \) or \((m,n) = (kpq/2, k(p-q)^2) \).

Proof. From Corollary 2, the necessary and sufficient condition for \(K_{m,m,n} \) to be \(Q \)-integral is that, for some integer \(r \),

\[n^2 + 8mn = r^2. \]

This is equivalent to \((n+4m)^2 = r^2 + 16m^2 \), showing that \(r, 4m \) and \(n+4m \) form a Pythagorean triple. By Euclid’s formula (see, e.g., D.E. Joyce’s web version of Euclid’s Elements, Book X, Proposition 29 available at http://babbage.clarku.edu/~djoyce/java/elements/bookX/propX29.html), then there exist integers \(k \), \(p \) and \(q \) such that either

\[r = 2kpq, \quad 4m = k(p^2 - q^2), \quad n + 4m = k(p^2 + q^2) \]

or

\[r = k(p^2 - q^2), \quad 4m = 2kpq, \quad n + 4m = k(p^2 + q^2), \]

from where either \((m,n) = (k(p^2 - q^2)/4, 2kq^2) \) or \((m,n) = (kpq/2, k(p-q)^2) \).

Corollary 5. \(K_{m,m,m,n} \) is \(Q \)-integral if and only if there exist integers \(k, u \) and \(v \) such that \(m = k(u + v)(3u + v)/8 \) and \(n = k(u - v)(3u - v)/8 \).

Proof. Corollary 2 yields that the necessary and sufficient condition for \(K_{m,m,m,n} \) to be \(Q \)-integral is that, for some integer \(r \),

\[(m + n)^2 + 12mn = r^2. \]
Adding $3(m-n)^2$ to both sides yields

$$(2m+2n)^2 = r^2 + 3(m-n)^2,$$ \hspace{1cm} (3)$$

which is an instance of a more general Diophantine equation

$$c^2 = a^2 + 3b^2.$$ \hspace{1cm} (4)$$

Let $k = \gcd(a,c)$. If $k > 1$, then $k^2|3b^2$ and, since 3 is square-free, $k|b$ as well, so that we may divide all terms in (4) by k^2 to get solutions $a' = a/k$ and $c' = c/k$ with $\gcd(a',c') = 1$. Suppose, therefore, that $\gcd(a,c) = 1$. From $3b^2 = (c-a)(c+a)$ and the fact that $\gcd(c-a,c+a) \in \{1,2\}$, depending on whether c and a are of the different or the same parity, the following four cases are possible:

Case (i) \hspace{0.5cm} $c-a = 3u^2$, $c+a = v^2$, $\gcd(u,v) = 1$, c and a are of the different parity. Then $a = (v^2 - 3u^2)/2$, $b = uv$ and $c = (3u^2 + v^2)/2$. Since c and a are of the different parity, both u and v have to be odd.

Case (ii) \hspace{0.5cm} $c-a = u^2$, $c+a = 3v^2$, $\gcd(u,v) = 1$, c and a are of the different parity. Then $a = (3v^2 - u^2)/2$, $b = uv$ and $c = (u^2 + 3v^2)/2$. Since c and a are of the different parity, both u and v have to be odd.

Case (iii) \hspace{0.5cm} $c-a = 6u^2$, $c+a = 2v^2$, $\gcd(u,v) = 1$, c and a are of the same parity. Then $a = v^2 - 3u^2$, $b = 2uv$ and $c = 3u^2 + v^2$.

Case (iv) \hspace{0.5cm} $c-a = 2u^2$, $c+a = 6v^2$, $\gcd(u,v) = 1$, c and a are of the same parity. Then $a = 3v^2 - u^2$, $b = 2uv$ and $c = u^2 + 3v^2$.

All solutions (a,b,c) of (4) are then obtained by multiplying the solutions from Cases (i)-(iv) by an arbitrary integer k. Back to the original condition (3) with $b = m-n$ and $c = 2m+2n$, Cases (i) and (ii) yield

$$m = k(u+v)(3u+v)/8, \quad n = k(u-v)(3u-v)/8,$$

while Cases (iii) and (iv) yield

$$m = k(u+v)(3u+v)/4, \quad n = k(u-v)(3u-v)/4.$$

Since the first set of (m,n) pairs properly contains the second set, we conclude that $K_{m,m,n,n}$ is Q-integral if and only if $m = k(u+v)(3u+v)/8$ and $n = k(u-v)(3u-v)/8$ for some integers k,u,v.

3. Infinite classes of Q-integral complete multipartite graphs with $s = 3$

We performed a computer search for Q-integral complete multipartite graphs with $s = 3$ in two classes of such graphs: K_{p_1,p_2,p_3} and K_{2p_1,p_2,p_3}. There are quite a few Q-integral graphs among them: 312 Q-integral graphs K_{p_1,p_2,p_3} with $1 \leq p_1 < p_2 < p_3 \leq 10000$, and 539 Q-integral graphs K_{2p_1,p_2,p_3} with $1 \leq p_1 < p_2 < p_3 \leq 1000$. The parameters and Q-spectrum for several of these Q-integral graphs are given in Tables 1 and 2. It is easy to spot a pattern among the parameters of Q-integral K_{2p_1,p_2,p_3} from Table 2.
by (1), has the form

\[P = \text{characteristic polynomial of } G. \]

The conditions for \(k, s \in \mathbb{Z} \) are:

(i) \(k = 16k', r = k'(5 + 12s^2) \) for \(k', s' \in \mathbb{Z} \);

(ii) \(k = 48k', r = k'(15 + 4s^2) \) for \(k', s \in \mathbb{Z} \);

(iii) \(k = 3k' \) and \(r = k'(4s^2 \pm s + 1) \) for \(k', s \in \mathbb{Z} \);

(iv) \(r \equiv k(12t^2 \pm 9t + 2) \) for \(k, t \in \mathbb{Z} \);

(v) \(k = 6k', r = k'(8s^2 \pm 6s + 3) \) for \(k', s \in \mathbb{Z} \);

(vi) \(k = 2k', r = k'(24s'^2 \pm 6s' + 1) \) for \(k', s' \in \mathbb{Z} \).

If \(k \) is square-free, then \(K_{2,2k,r,3r-k} \) is \(Q \)-integral if and only if one of the above conditions holds.

Proof. Let \(n = 3k + 4r \). The \(Q \)-characteristic polynomial of \(K_{2,2k,r,3r-k} \), by (1), has the form

\[P(Q(K_{2,2k,r,3r-k}), x) = (x - n + 2k)^{4k-2}(x - n + r)^{r-1}(x - n + 3r - k)^{3r-k-1}B(x), \]

Table 1: The parameters and \(Q \)-spectrum of \(Q \)-integral graphs \(K_{p_1,p_2,p_3} \) with \(p_1 \leq 20 \). The exponents in parentheses denote eigenvalue multiplicities.

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(Q)-spectrum of (K_{p_1,p_2,p_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>72</td>
<td>847</td>
<td>([2, 79^{(6)}, 854^{(7)}, 882, 919^{(6)}, 968])</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>24</td>
<td>([9, 25^{(2)}, 34^{(14)}, 39^{(9)}, 64])</td>
</tr>
<tr>
<td>10</td>
<td>384</td>
<td>735</td>
<td>([9, 394^{(7)}, 745^{(3)}, 1024, 1119^{(9)}, 1255])</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>297</td>
<td>([3, 36^{(2)}, 308^{(24)}, 322^{(10)}, 363])</td>
</tr>
<tr>
<td>13</td>
<td>48</td>
<td>156</td>
<td>([9, 61^{(15)}, 169^{(4)}, 204^{(12)}, 256])</td>
</tr>
<tr>
<td>14</td>
<td>144</td>
<td>1694</td>
<td>([4, 158^{(1)}, 170^{(14)}, 1764, 1838^{(13)}, 1936])</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>48</td>
<td>([18, 50^{(4)}, 68^{(29)}, 78^{(19)}, 128])</td>
</tr>
<tr>
<td>20</td>
<td>768</td>
<td>1470</td>
<td>([18, 788^{(16)}, 1490^{(6)}, 2048, 2238^{(19)}, 2450])</td>
</tr>
</tbody>
</table>

Table 2: The parameters and \(Q \)-spectrum of \(Q \)-integral graphs \(K_{p_1,p_2,p_3} \) with \(p_1 \leq 5 \). The exponents in parentheses denote eigenvalue multiplicities.

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(Q)-spectrum of (K_{p_1,p_2,p_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>14</td>
<td>([3, 9^{(3)}, 16, 18^{(4)}, 19, 21^{(2)}, 31])</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>68</td>
<td>([3, 27^{(6)}, 72^{(22)}, 79, 91, 93^{(2)}, 112])</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>95</td>
<td>([3, 36^{(14)}, 96^{(3)}, 112, 127, 129^{(2)}, 151])</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>28</td>
<td>([6, 18^{(2)}, 32, 36^{(6)}, 38, 42^{(6)}, 62])</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>55</td>
<td>([6, 27^{(2)}, 62, 64^{(4)}, 74, 78^{(4)}, 104])</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>91</td>
<td>([6, 39^{(9)}, 96^{(3)}, 104, 122, 126^{(6)}, 158])</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>90</td>
<td>([7, 37^{(8)}, 100^{(27)}, 117, 122^{(6)}, 157])</td>
</tr>
</tbody>
</table>
where

\[
B(x) = (x - n + 4k)^2(x - n + 2r)(x - n + 2(3r - k)) \\
\left(1 - 2 \frac{2k}{x - n + 4k} - \frac{r}{x - n + 2r} - \frac{3r - k}{x - n + 2(3r - k)}\right).
\]

Hence, \(K_{2,2k,r,3r-k}\) is \(Q\)-integral if and only if \(B(x)\) has integer roots only. After replacing \(n = 3k + 4r\), \(B(x)\) simplifies to

\[
B(x) = (x - 3k)(x - 4r + k)(x^2 - (7k + 8r)x + 16(k^2 + kr + r^2)),
\]

showing that \(B(x)\) has integer roots if and only if the discriminant of a quadratic factor

\[
(7k + 8r)^2 - 64(k^2 + kr + r^2) = 48kr - 15k^2
\]
is a perfect square \(m^2\).

From \(48kr - 15k^2 = m^2\) we have \(k|5k^2 + m^2\). If \(k\) is square-free, then from \(k|m^2\) follows \(k|m\), i.e., \(m = km'\) holds.

Let us, therefore, suppose that \(m = km'\) for \(m' \in \mathbb{Z}\). If \(m' = 2s\) is even, then

\[
r = \frac{k(15 + 4s^2)}{48}.
\]

Since \(15 + 4s^2\) is odd, it may not be divisible by 16, so for \(r\) to be an integer, \(k\) has to be divisible by 16. If \(s = 3s'\), then \(r = k'(5 + 12s'^2)\) for \(k = 16k'\), yielding the condition (i). If \(s\) is not divisible by 3, then \(k\) has to be of the form \(k = 48k'\), so that \(r = k'(15 + 4s'^2)\), yielding the condition (ii).

If \(m'\) is odd, then it has the form \(m' = 8s + 1\) or \(m' = 8s + 3\) for \(s \in \mathbb{Z}\).

If \(m' = 8s + 1\), then

\[
r = k\frac{4s^2 + s + 1}{3},
\]

from where either \(3|k\) or \(s = 3t + 1\) for \(t \in \mathbb{Z}\). If \(k = 3k'\), then \(r = k'(4s^2 + s + 1)\), yielding the condition (iii). If \(s = 3t + 1\) for \(t \in \mathbb{Z}\), then \(r = k(12t^2 + 9t + 2)\), yielding the condition (iv).

If \(m' = 8s + 3\), then

\[
r = k\left(s^2 + 2s^2 + 3\right),
\]

from where either \(6|k\) or \(2|k, 3|s\). If \(k = 6k'\), then \(r = k'(8s^2 + 6s + 3)\), yielding the condition (v). If \(k = 2k'\) and \(s = 3s'\), then \(r = k'(24s'^2 + 6s' + 1)\), yielding the condition (vi).

\[\square\]

A bit more effort reveals a barely noticeable pattern among \(Q\)-integral complete tripartite graphs. Recall that the Fibonacci numbers are defined by the recurrence relation \(F_n = F_{n-1} + F_{n-2}, n \geq 2\), and the initial values \(F_0 = F_1 = 1\).
Theorem 7. The complete tripartite graph

\[K_{F_{2n}^2 - F_{2n}, F_{2n}^3 + F_{2n}, F_{2n}^2 - 1} \]

is \(Q \)-integral for \(n \geq 2 \).

Proof. Let \(s = F_{2n} \) and \(p_1 = (s^2 - s)/2, p_2 = (s^2 + s)/2, p_3 = s^2 - 1 \) and \(n = p_1 + p_2 + p_3 = 2s^2 - 1 \). The characteristic polynomial of \(Q(K_{p_1,p_2,p_3}) \) is, by (1), equal to

\[
P(Q(K_{p_1,p_2,p_3}), x) = \prod_{i=1}^{3}(x-n+p_i)^{p_i-1} \prod_{i=1}^{3}(x-n+2p_i) \left(1 - \sum_{i=1}^{3} \frac{p_i}{x-n+2pi} \right).
\]

The polynomial \(\prod_{i=1}^{3}(x-n+p_i)^{p_i-1} \) has integer roots only, so we focus further to

\[
\prod_{i=1}^{3}(x-n+2p_i) \left(1 - \sum_{i=1}^{3} \frac{p_i}{x-n+2pi} \right) = x^3 - 2n x^2 + n^2 x - 4p_1p_2p_3.
\]

Substituting the values of \(p_1, p_2, p_3 \) and \(n \), we get

\[
x^3 - 2n x^2 + n^2 x - 4p_1p_2p_3 = (x-s^2) [x^2 - (3s^2 - 2)x + (s^2 - 1)^2],
\]

showing that \(s^2 = F_{2n}^2 \) is an integral root of \(P(Q(K_{p_1,p_2,p_3}), x) \). The roots of \(x^2 - (3s^2 - 2)x + (s^2 - 1)^2 \) are further equal to

\[
x_{1,2} = \frac{3s^2 - 2 \pm \sqrt{(3s^2 - 2)^2 - 4(s^2 - 1)^2}}{2} = \frac{3s^2 - 2 \pm s\sqrt{5s^2 - 4}}{2}.
\]

It is easy to show that \(5F_{2n}^2 - 4 \) is a perfect square. First, we show that

\[
F_{2n}^2 - 1 = F_{2n+1}F_{2n-1}, \quad n \geq 1,
\]

by induction on \(n \). For \(n = 1 \), this reduces to \(F_2^2 - 1 = 3 = F_3F_1 \). Assuming that the equality \(F_{2n}^2 - 1 = F_{2n+1}F_{2n-1} \) holds for a particular \(n \geq 1 \), we have

\[
F_{2n+2}^2 - 1 = (F_{2n+1} + F_{2n})^2 - 1 = (F_{2n+1} + 2F_{2n})F_{2n+1} + F_{2n}^2 - 1 = (F_{2n+1} + 2F_{2n} + F_{2n-1})F_{2n+1} = (F_{2n+2} + F_{2n+1})F_{2n+1} = F_{2n+3}F_{2n+1}.
\]

If we now multiply (5) by four and add with \(F_{2n}^2 = (F_{2n+1} + F_{2n-1})^2 \), we have

\[
5F_{2n}^2 - 4 = 4F_{2n+1}F_{2n-1} + (F_{2n+1} - F_{2n-1})^2 = (F_{2n+1} + F_{2n-1})^2.
\]

Hence, the remaining two roots of \(P(Q(K_{p_1,p_2,p_3}), x) \) are integers equal to

\[
x_1 = \frac{3F_{2n}^2 - 2 - F_{2n}(F_{2n+1} + F_{2n-1})}{2} = \frac{3F_{2n}^2 - 2 - F_{2n}(2F_{2n} + F_{2n-1})}{2} = F_{2n}(F_{2n} - F_{2n-1}) - 1 = F_{2n}F_{2n-2} - 1,
\]

and

\[
x_2 = \frac{3F_{2n}^2 - 2 + F_{2n}(F_{2n+1} + F_{2n-1})}{2} = \frac{3F_{2n}^2 - 2 + F_{2n}(2F_{2n+1} - F_{2n})}{2} = F_{2n}(F_{2n} + F_{2n+1}) - 1 = F_{2n}F_{2n+2} - 1.
\]

\(\square \)
4. \(Q \)-integral complete multipartite graphs with \(s \geq 4 \)

We performed a computer search for \(Q \)-integral graphs \(K_{p_1,p_2,p_3,p_4} \), with \(p_1 < p_2 < p_3 < p_4, p_1 \leq 100 \) and \(p_4 \leq 1000, \) and found 46 such graphs. In Table 3 we list the parameters and \(Q \)-spectrum of those graphs, whose parameters are not the multiples of parameters of smaller such \(Q \)-integral graphs.

Table 3: The parameters and \(Q \)-spectrum of some \(Q \)-integral graphs \(K_{p_1,p_2,p_3,p_4} \). The exponents in parentheses denote eigenvalue multiplicities.

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(Q)-spectrum of (K_{p_1,p_2,p_3,p_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>22</td>
<td>36</td>
<td>{19, 43^{36}, 57^{34}, 63, 64^{14}, 73^2, 112}</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>45</td>
<td>100</td>
<td>{24, 74^{19}, 114, 129^{24}, 150, 154^{15}, 165^8, 234}</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>36</td>
<td>60</td>
<td>{36, 76^{16}, 106^{11}, 111^{24}, 121^{14}, 196}</td>
</tr>
<tr>
<td>24</td>
<td>49</td>
<td>144</td>
<td>294</td>
<td>{63, 212^{96}, 343, 367^{143}, 448, 462^{45}, 487^{23}, 679}</td>
</tr>
<tr>
<td>30</td>
<td>81</td>
<td>100</td>
<td>270</td>
<td>{81, 211^{269}, 301, 381^{99}, 400^{84}, 451^{29}, 661}</td>
</tr>
<tr>
<td>45</td>
<td>253</td>
<td>276</td>
<td>483</td>
<td>{252, 529, 574^{482}, 781^{275}, 804^{-252}, 919, 1741, 1012^{44}}</td>
</tr>
<tr>
<td>48</td>
<td>88</td>
<td>198</td>
<td>363</td>
<td>{121, 343^{166}, 433, 499^{197}, 576, 609^{87}, 649^{47}, 961}</td>
</tr>
<tr>
<td>51</td>
<td>144</td>
<td>289</td>
<td>816</td>
<td>{144, 484^{1014}, 892, 1011^{288}, 1156^{144}, 1249^{50}, 1708}</td>
</tr>
<tr>
<td>55</td>
<td>90</td>
<td>132</td>
<td>330</td>
<td>{112, 277^{129}, 387, 475^{132}, 517^{89}, 552^{54}, 847}</td>
</tr>
<tr>
<td>80</td>
<td>98</td>
<td>200</td>
<td>245</td>
<td>{175, 343, 376^{244}, 423^{199}, 448, 525^{97}, 543^{79}, 903}</td>
</tr>
<tr>
<td>98</td>
<td>175</td>
<td>252</td>
<td>450</td>
<td>{240, 525^{449}, 555, 723^{251}, 735, 800^{174}, 877^{97}, 1395}</td>
</tr>
</tbody>
</table>

A careful observation of these parameter sets shows that \(\{15, 25, 36, 60\}, \{30, 81, 100, 270\} \) and \(\{51, 144, 289, 816\} \) are all instances of \(3a, a^2, 9b^2, 3ab^2 \) for particular values of \(a, b \in \mathbb{Z} \).

Let \(n = 3a + a^2 + 9b^2 + 3ab^2 \). The \(Q \)-characteristic polynomial of \(K_{3a,a^2,9b^2,3ab^2} \), by (1), has the form

\[
P(Q(K_{3a,a^2,9b^2,3ab^2}), x) = (x-n+3a)^{3a-1}(x-n+a^2)^{a^2-1}(x-n+9b^2)^{9b^2-1}(x-n+3ab^2)^{3ab^2-1}B(x),
\]

where

\[
B(x) = (x-n+6a)(x-n+2a^2)(x-n+18b^2)(x-n+6ab^2)
\]

\[
\left(1 - \frac{3a}{x-n+6a} - \frac{a^2}{x-n+2a^2} - \frac{9b^2}{x-n+18b^2} - \frac{3ab^2}{x-n+6ab^2}\right),
\]

which, after replacing \(n = 3a + a^2 + 9b^2 + 3ab^2 \), becomes

\[
B(x) = (x - (9b^2 + 3a(b - 1)^2 + a^2))(x - (9b^2 + 3a(b + 1)^2 + a^2))
\]

\[
(\text{a}^2 - (a+3)(a+3b^2)x + 36a^2b^2).
\]

Hence, \(K_{3a,a^2,9b^2,3ab^2} \) is \(Q \)-integral if and only if the discriminant of the quadratic factor above

\[
(a+3)^2(a+3b^2)^2 - 144a^2b^2 = [(a+3)(a+3b^2) - 12ab] [(a+3)(a+3b^2) + 12ab]
\]

\[
= [(2a - 3b^2 - 3a(a - (b^2 + 1))] [(2a + 3b^2) - 3a(a - (b^2 + 1))]
\]

is a perfect square.
The simplest way to achieve this is to set \(a = b^2 + 1 \)—this holds for the parameter sets \(\{15, 25, 36, 60\}, \{30, 81, 100, 270\} \) and \(\{51, 144, 289, 816\} \) as well. For \(a = b^2 + 1 \), \(B(x) \) becomes

\[
B(x) = (x - 9b^2) \left(x - 4 \left(b^2 + 1 \right)^2 \right) \\
\quad \cdot (x - (4b^4 - 6b^3 + 17b^2 - 6b + 4)) \left(x - (4b^4 + 6b^3 + 17b^2 + 6b + 4) \right).
\]

Hence, we proved

Theorem 8. The complete 4-partite graph \(K_{3(b^2 + 1), (b^2 + 1)^2, 9b^2, 3b^2(b^2 + 1)} \) is \(Q \)-integral for any \(b \in \mathbb{Z} \).

Further computer searches unearthed several more \(Q \)-integral complete multipartite graphs with \(s \geq 4 \). First, in Table 4 we list the parameters of seven \(Q \)-integral graphs \(K_{a_1, p_1, a_2, p_2, a_3, p_3, a_4, p_4} \), where not all \(a_i \)’s are ones and which have at most 120 vertices. Table 4 also contains nontrivial roots of the \(Q \)-characteristic polynomial (1), i.e., the roots of the factor

\[
\prod_{i=1}^{r} (x - n + 2p_i) \left(1 - \sum_{i=1}^{r} \frac{p_i}{x - n + 2pi} \right)
\]

Second, in Table 5 we list the parameters and nontrivial part of the \(Q \)-spectrum for seven \(Q \)-integral graphs \(K_{a_1, p_1, a_2, p_2, a_3, p_3, a_4, p_4, a_5, p_5} \) on at most 1000 vertices.

Table 4: The parameters of \(Q \)-integral graphs \(K_{a_1, p_1, a_2, p_2, a_3, p_3, a_4, p_4} \).

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(p_1)</th>
<th>(a_2)</th>
<th>(p_2)</th>
<th>(a_3)</th>
<th>(p_3)</th>
<th>(a_4)</th>
<th>(p_4)</th>
<th>Nontrivial part of the (Q)-spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>24</td>
<td>[71, 39, 32, 11]</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>20</td>
<td>[117, 59, 44, 33]</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>[143, 67, 61, 56]</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>[151, 76, 69, 63]</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>22</td>
<td>[161, 87, 80, 61]</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>19</td>
<td>[171, 87, 69, 60]</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>18</td>
<td>[209, 101, 92, 83]</td>
</tr>
</tbody>
</table>

Table 5: The parameters of \(Q \)-integral graphs \(K_{a_1, p_1, a_2, p_2, a_3, p_3, a_4, p_4, a_5, p_5} \).

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(p_1)</th>
<th>(a_2)</th>
<th>(p_2)</th>
<th>(a_3)</th>
<th>(p_3)</th>
<th>(a_4)</th>
<th>(p_4)</th>
<th>(a_5)</th>
<th>(p_5)</th>
<th>Nontrivial part of the (Q)-spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>17</td>
<td>1</td>
<td>27</td>
<td>3</td>
<td>45</td>
<td>[655, 331, 319, 301, 280]</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>15</td>
<td>6</td>
<td>21</td>
<td>4</td>
<td>27</td>
<td>[1011, 512, 497, 485, 471]</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td>13</td>
<td>5</td>
<td>15</td>
<td>9</td>
<td>20</td>
<td>[1067, 537, 523, 519, 512]</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>2</td>
<td>18</td>
<td>6</td>
<td>20</td>
<td>3</td>
<td>26</td>
<td>5</td>
<td>37</td>
<td>[1189, 587, 580, 569, 553]</td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>13</td>
<td>15</td>
<td>6</td>
<td>25</td>
<td>3</td>
<td>39</td>
<td>1</td>
<td>49</td>
<td>[1341, 673, 649, 621, 596]</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>19</td>
<td>14</td>
<td>23</td>
<td>3</td>
<td>50</td>
<td>[1339, 676, 665, 655, 607]</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>17</td>
<td>9</td>
<td>2</td>
<td>16</td>
<td>1</td>
<td>29</td>
<td>12</td>
<td>42</td>
<td>[1454, 752, 730, 718, 698]</td>
</tr>
</tbody>
</table>
Third, we found an example of \(Q\)-integral complete multipartite graph with \(s = 6\) as well:

\[
K_{\overline{4}, 4, 6}, \overline{10, 7}, (10, 13), 50, 19, 25, 24, 53, 33
\]

which has \([9847, 4932, 4921, 4915, 4901, 4889]\) as the nontrivial part of its \(Q\)-spectrum.

5. Conclusions

We can now see that both questions of Zhao et al. [13] have affirmative answers: Question 4.1 is answered by Theorem 8 and examples from Section 4, while Question 4.2 is answered by Theorems 7 and 8 and examples from Tables 1 and 3. All these results suggest that \(Q\)-integral complete multipartite graphs are likely to exist for an arbitrarily large \(s\), regardless of the condition that all \(a_i\)’s be equal to one.

At the end, we have to note that the same authors have published another paper [14] in which they studied the Seidel spectrum of the complete multipartite graphs, where the Seidel matrix \(S(G)\) of a graph \(G\) is defined as \(S(G) = J - I - 2A(G)\), with \(J\) and \(I\) being the all-one and the unit matrix, respectively. In particular, they obtained that the Seidel characteristic polynomial of \(K_{a_1, \ldots, a_s}^{p_1, \ldots, p_r}\) is

\[
P(S(K_{p_1, \ldots, p_r}), x) = (x + 1)^{n-r} \prod_{i=1}^{r} (x - 2p_i + 1) \left(1 + \sum_{i=1}^{r} \frac{p_i}{x - 2p_i + 1} \right).
\]

After deriving results about Seidel integral complete multipartite graphs, analogous to those in [13], the authors finished the manuscript with analogous and equally numbered Questions 4.1 and 4.2 in [14]:

Question 4.1 [14] Are there any Seidel integral complete multipartite graphs \(K_{a_1, p'_1, \ldots, a_s, p'_s}\) for arbitrarily large \(s\)?

Question 4.2 [14] Are there any Seidel integral complete multipartite graphs \(K_{a_1, p'_1, \ldots, a_s, p'_s}\) with \(a_1 = \cdots = a_s = 1\) when \(s \geq 3\)?

It is straightforward to see that for the nontrivial factors of the \(Q\)- and Seidel characteristic polynomials

\[
Q^*(x) = \frac{P(Q(K_{p_1, \ldots, p_r}), x)}{\prod_{i=1}^{r} (x - n + p_i + 1)} = \prod_{i=1}^{r} (x - n + 2p_i) \left(1 + \sum_{i=1}^{r} \frac{p_i}{x - n + 2p_i} \right)
\]

and

\[
S^*(x) = \frac{P(S(K_{p_1, \ldots, p_r}), x)}{(x + 1)^{n-r}} = \prod_{i=1}^{r} (x - 2p_i + 1) \left(1 + \sum_{i=1}^{r} \frac{p_i}{x - 2p_i + 1} \right)
\]

holds that

\[
S^*(x) = (-1)^r Q^*(n-x-1).
\]
Hence, $S^*(x)$ has integer roots if and only if $Q^*(x)$ has integer roots or, in other words, a complete multipartite graph is Seidel integral if and only if it is Q-integral. Therefore, our results from previous sections give a partially affirmative answer to Question 4.1 and an affirmative answer to Question 4.2 from [14] as well.

Acknowledgement. The authors are indebted to Marko Milošević for helpful discussions while obtaining the initial results of this manuscript, and to an anonymous reviewer whose comments led to substantial extension of the initial manuscript.

References

